Polyvalent cations as permeant probes of MIC and TRPM7 pores.

نویسندگان

  • Hubert H Kerschbaum
  • J Ashot Kozak
  • Michael D Cahalan
چکیده

Recent studies in Jurkat T cells and in rat basophilic leukemia cells revealed an Mg(2+)-inhibited cation (MIC) channel that has electrophysiological properties similar to TRPM7 Eyring rate model expressed exogenously in mammalian cells. Here we compare the characteristics of several polyvalent cations and Mg(2+) to block monovalent MIC current from the outside. Putrescine, spermidine, spermine, PhTX-343 (a derivative of the naturally occurring polyamine toxin philanthotoxin), and Mg(2+) each blocked in a dose- and voltage-dependent manner, indicating a blocking site within the electric field of the ion channel. Spermine and the relatively bulky PhTX-343 exhibited voltage dependence steeper than that expected for the number of charges on the molecule. Polyamines and Mg(2+) are permeant blockers, as judged by relief of block at strongly negative membrane potentials. Intracellular dialysis with spermine (300 microM) had no effect, indicating an asymmetrical pore. At the single-channel level, spermine and Mg(2+) induced flickery block of 40-pS single channels. I/V characteristics and polyamine block are similar in expressed TRPM7 and in native MIC currents, consistent with the conclusion that native MIC channels are composed of TRPM7 subunits. An Eyring rate model is developed to account for I/V characteristics and block of MIC channels by polyvalent cations from the outside.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charge Screening by Internal pH and Polyvalent Cations as a Mechanism for Activation, Inhibition, and Rundown of TRPM7/MIC Channels

The Mg2+-inhibited cation (MIC) current, believed to represent activity of TRPM7 channels, is found in lymphocytes and mast cells, cardiac and smooth muscle, and several other eukaryotic cell types. MIC current is activated during whole-cell dialysis with divalent-free internal solutions. Millimolar concentrations of intracellular Mg2+ (or other divalent metal cations) inhibit the channels in a...

متن کامل

Potentiation of TRPM7 Inward Currents by Protons

TRPM7 is unique in being both an ion channel and a protein kinase. It conducts a large outward current at +100 mV but a small inward current at voltages ranging from -100 to -40 mV under physiological ionic conditions. Here we show that the small inward current of TRPM7 was dramatically enhanced by a decrease in extracellular pH, with an approximately 10-fold increase at pH 4.0 and 1-2-fold inc...

متن کامل

MIC channels are inhibited by internal divalent cations but not ATP.

TRPM7 channels are nonselective cation channels that possess a functional alpha-kinase domain. It has been proposed that heterologously expressed TRPM7 channels are activated (Runnels et al., 2001) or inhibited (Nadler et al., 2001) by dialyzing the cell with millimolar levels of ATP. The endogenous correlate of TRPM7 has been identified in T-lymphocytes and RBL (rat basophilic leukemia) cells ...

متن کامل

TRPM7 channel is sensitive to osmotic gradients in human kidney cells.

TRPM7 (transient-receptor-potential melastatin 7) is an ion channel with alpha-kinase function. TRPM7 is divalent-selective and regulated by a range of receptor-stimulated second messenger pathways, intracellular Mg-nucleotides, divalent and polyvalent cations and pH. TRPM7 is ubiquitously found in mammalian cells, including kidney, the responsible organ for osmolyte regulation, posing the ques...

متن کامل

Distinct Properties of CRAC and MIC Channels in RBL Cells

In rat basophilic leukemia (RBL) cells and Jurkat T cells, Ca(2+) release-activated Ca(2+) (CRAC) channels open in response to passive Ca(2+) store depletion. Inwardly rectifying CRAC channels admit monovalent cations when external divalent ions are removed. Removal of internal Mg(2+) exposes an outwardly rectifying current (Mg(2+)-inhibited cation [MIC]) that also admits monovalent cations whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 84 4  شماره 

صفحات  -

تاریخ انتشار 2003